
Deconstructing Mozart:

A GAN-Style Approach to Raw Audio

Processing and Generation

DongGyun Kim

Advisor: Prof. Niraj Jha

June 2018

Submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Engineering

Department of Electrical Engineering

Princeton University

I hereby declare that this Independent Work report

represents my own work in accordance with University

regulations.

DongGyun Kim

Deconstructing Mozart: A GAN-Style Approach to Raw

Audio Processing and Generation

DongGyun Kim

Abstract

We propose a new system for raw audio processing and generation which combines the

success of Generative Adversarial Networks (GANs) and WaveNet, a generative model

created by DeepMind. This system will generate piano music using only sample piano

audio files that are given to it. The use of GANs together with raw audio, rather than

derived features, makes this project unique in the realm of machine learning. Most

previous works that compose music through artificial means utilize representations of

music, rather than raw audio, due to computational complexity, and previous works

that use GANs often solve the problem of image synthesis. Current progress of the

fully implemented system with WaveNet and GANs are able to nearly mimic the

frequency domain characteristics of the inputted data.

iv

Acknowledgments

There are a lot of people to thank for their support on this paper. Any research

project, particularly those driven by undergraduates, requires a great deal of guid-

ance and help from those with a deeper understanding of the topics. In this regard,

I couldn’t have found a better advisor and research associate than Professor Niraj

Jha and Ozge Akmandor. Their advice, week by week and email by email, helped me

scope out an appropriate project and helped light the way through uncharted lands.

I’d also to thank my parents as well for their encouragement in the most difficult

times on this project. I really could not have accomplished what I have, both in this

paper and at Princeton, without them.

v

Contents

Abstract . iv

Acknowldgments . v

1 Introduction 1

1.1 Overview . 2

1.2 Motivation . 3

2 Background Work 7

2.1 Generative Adversarial Networks . 7

2.2 WaveNet . 9

3 Methodology 13

3.1 Discriminator Feasibility . 14

3.2 Simple GAN . 15

3.3 WaveNet GAN . 20

3.4 Success Metrics . 22

4 Results 25

4.1 Initial Discriminator Testing . 25

4.2 Simple GAN results . 26

4.3 WaveNet GAN results . 32

vi

5 Conclusion and Future Work 36

5.1 Conclusion . 36

5.2 Proposed Improvements . 37

5.2.1 Increased Depth and Computation Time 37

5.2.2 Signal Processing for Generator Improvement 38

5.2.3 Potential Mode Collapse Solutions 39

5.2.4 Progressive Growing . 40

5.3 Final Discussion . 42

A Code Listing 43

A.1 Simple GAN Code . 43

A.2 WaveNet GAN Code . 50

A.3 WaveNet Model . 61

vii

Chapter 1

Introduction

An incredibly important step towards artificial intelligence is unsupervised learning,

the modeling of real, observational phenomena into structures of a lower dimension

without human supervision. At this time, most machine learning algorithms (classi-

fied as supervised learning) require a great deal of manual work before the algorithms

can begin to learn. They attempt to classify according to labels that must be created

by humans: numerical digits, images of cats and dogs, musical composers — all of

these must be collected and labeled before the prediction and classification of new

data can begin. Could it be possible for algorithms to move past the need for human

labels and instead model the behavior of the system?

To this end, there are emerging approaches slowly starting to achieve this lofty

goal of artificial intelligence. And while the most common approach to unsupervised

learning is through various clustering algorithms (i.e., k-Means), there are exciting

strides being made with a new model of unsupervised learning coined “GANs” (gener-

ative adversarial networks). GANs were first introduced by Goodfellow et. al. in 2014

and have since empirically achieved remarkable success in canonical machine learning

tasks [1]. GANs have already achieved success in the realm of image generation, being

able to generate superficially realistic images with recognizable characteristics [2].The

1

Figure 1.1: High level representation of audio generation scheme.

question must then be asked: if images can be generated, why not music?

1.1 Overview

This project will focus on the generation of piano music using a collection of raw

audio samples (i.e., files of type .wav or .m4a), as shown in Figure 1.1. While this

project will specifically focus on generating music in the style of composers, we note

that the unsupervised nature of GANs means that a successful generative system will

be able to generalize whatever input is given to it: the decision to narrow the audio

to a more recognizable set of human labels, such as music of the same composer and

instrument, was only made to make a more successful and cohesive output, not as a

result of a technical limitation of this project.

As a result, this project is unique in a number of ways. While there are already a

number of machine learning projects that can “compose” in certain musical genres,

few have utilized the power of GANs, and even fewer use raw audio. By being

able to use raw audio, as opposed to derived features of audio or representations of

music, we unlock far greater flexibility and face much larger challenges. In particular,

harnessing the power of WaveNet, introduced in Section 2.2 within our GAN structure

is particularly unique.

2

There are already a number of applications that use GANs to learn on images, one

of which we’ll see in Section 1.2, but there are some important differences between

raw image data and raw audio data that make audio much more difficult to learn. On

the surface, it may appear that audio is simpler to process — while images are in two

dimensions, audio only exists in one. However, audio presents much greater difficulty

for traditional learning algorithms due to the sheer size of the data. In the case of

the .wav audio format, for example, audio can be sampled at 1 Hz to 4.3 GHz (up

to 4.3× 109 data points per second of audio) and has 16 bits of information at each

data point (65,536 quantized levels, or “channels”). Beyond that, music presents

an additional challenge because of the information and structure present at many

timescales. Pieces do not generally get composed through a rambling melody but

rather by a strict harmonic structure within adjacent notes, measures and sections.

It is not enough to generate music given only the last few milliseconds of data — music

has a much broader structure, often at the scale of seconds or minutes, necessitating

an increase in the size of the receptive field.

In the traditional convolutional neural network model, increasing the receptive

field — the size of input considered before generating a new output point — is an ex-

tremely costly operation. A model to effectively process data at this scale would have

repercussions that reach further than just music generation and classification. Being

able to process large amounts of raw data is an important step for more accurately

modeling complex systems for a vast number of applications.

1.2 Motivation

As mentioned earlier, GANs have been used to create incredibly photo-realistic im-

ages. Recent developments in both hardware and software have yielded incredible

results, some of which we can see in Figure 1.2.

3

Figure 1.2: Faces generated by Nvidia’s new GAN algorithm [3].

While these photos generated by Nvidia don’t match the resolution of a top-of-the-

line camera, they are “sharp, detailed, and, in many cases, remarkably convincing”

[3]. With enough computing time, Nvidia trained its algorithms over thousands of

celebrity images and was able to generate images that could fool humans.

From a high level view, generating music in the style of a composer is not much

different than the ability to generate photo-realistic celebrity photos. The images

generated by Nvidia’s GANs aren’t fitted to a particular person or object. Instead,

the neural networks learned to model the distribution of the photo database and

create something entirely new. The algorithm created by Nvidia doesn’t specialize in

faces; it can generate horses, buses, bicycles, etc. through the recognition of common

features [3]. In the same way, this project aims to train a GAN-type network to model

the distribution of the music of a composer (say, Mozart), and then generate music

in that style.

Just as faces have groups of recognizable features organized in an understandable

way — ears, eyes, nose — music is the same. Mozart’s music is made up of recog-

nizable chords, phrase fragments and structures put together in ways idiomatic of his

time period and of style of composing. One such idiomatic structure, Sonata-Allegro

form, is detailed in Figure 1.3. While this form looks at the scale of many minutes

4

Figure 1.3: A macro-structure in many of Mozart’s works [4].

(which is difficult to generate in a reasonable amount of time), the music of Mozart

also often follows a set of rules referred to “tonal syntax”. Tonal syntax dictates both

the construction of each chord and the relationship between chords. In the music of

Mozart and his contemporaries, tonal syntax was often strictly adhered to.

It is not particularly unique to compose music through the use of machine learning

algorithms. However, it is quite novel to do music composition through the modeling

of raw audio, as opposed to the use of representations of music (i.e., MIDI files). There

are numerous projects that have achieved a good deal of success in music generation

using these music representation methods through a manipulation of different neural-

network structures, such as recurrent neural networks (RNNs) [5] and long short-term

memory (LSTM) [6]. It is important to note that using note representation greatly

reduces the amount of data present in each piece of music, thus requiring less complex

algorithms and computing time. This project is motivated by both the success that

GANs have had in creating realistic images and the uniqueness and flexibility of

modeling raw audio.

Interesting parallels to the design in this paper can be found in “Synthesizing

Audio with Generative Adversarial Networks” by Donahue et al [7]. Donahue’s paper

proposes two structures which utilize the learning ability GANs to the problem of

modeling raw audio, named “SpecGAN“ and “WaveGAN”. These structures model

the audio samples in the frequency-domain and time-domain, respectively. Although

the building blocks of their proposed solutions are different than the ones proposed

5

in this paper, they aim to solve a very similar problem and do so with a good deal

of empirical success. However, “SpecGAN” produces only a spectrogram represen-

tation for the audio samples, which then can be approximately inverted, and both

“SpecGAN” and “WaveGAN” were unable to produce competitive results with that

of WaveNet [8] and other similar audio generative models.

6

Chapter 2

Background Work

This chapter will detail background work essential to the design of this project.

2.1 Generative Adversarial Networks

There are numerous works that this paper will draw from. The most fundamental is

the work of Goodfellow et al. which develops the foundation of the inner-workings

of GANs. In short, GANs pit two different neural networks against each other. Nag

describes GANs as follows:

The models play two distinct (literally, adversarial) roles. Given some

real data set R, G is the generator, trying to create fake data that looks

just like the genuine data, while D is the discriminator, getting data from

either the real set or G and labeling the difference. Goodfellow’s metaphor

(and a fine one it is) was that G was like a team of forgers trying to match

real paintings with their output, while D was the team of detectives trying

to tell the difference. (Except that in this case, the forgers G never get

to see the original data — only the judgments of D. They’re like blind

forgers) [9].

7

Figure 2.1: Generative Adversarial Networks metaphor visualized [9].

This metaphor is additionally illustrated in Figure 2.1.

While there are a number of specific technical ways to implement GANs, there

are a few standard required steps for its learning, regardless of implementation. In a

classical GAN, the discriminator network takes in an input (which can be either real

data or generated data) and outputs a 1 or 0: real or fake, while the generator network

takes a random input (usually sampled from a normal distribution) and generates an

output the same size as discriminator’s input. Through training, the discriminator

alternates between receiving both real and fake data. In the case the discriminator

actually believes the input is real when it is in fact fake, or vice-versa, gradient descent

is performed on the weights of its network. In the case where the discriminator believes

the input is fake and it is actually fake, the generator then likewise adjusts its weights

with gradient descent. Figure 2.2 summarizes this training process.

This description is a high level understanding of the training process. More offi-

cially, the ascending in the stochastic gradient update performed by the discriminator,

given noise samples {z1, . . . , zm} and real data {x1, . . . xm} is given by

∇θd
1

m

m∑
i=1

[logD (xi) + log (1−D (G (zi)))] [1].

Similarly, the descending in the stochastic gradient update for the generator, given

8

Figure 2.2: Generative Adversarial Networks training flowchart.

noise samples {z1, . . . , zm} is given by

∇θd
1

m

m∑
i=1

log (1−D (G (zi))) [1].

2.2 WaveNet

Another important foundational work for this project is WaveNet. WaveNet was

developed by Google’s DeepMind to generate speech to mimic the human voice and

improve the quality of TTS (text to speech) systems [10]. However, it is the structural

advantages that WaveNet presents in audio processing that make it well suited for

this project, particularly in regard to the exponential increase in the size of receptive

field over the number of hidden layers to capture features at a greater timescale.

At its core, WaveNet is a stack of dilated convolutional networks, which are sim-

ilar to traditional convolutional neural networks (CNNs). Unlike CNNs, the neuron

connections in Dilated CNNs between layers are spaced out exponentially. By dilat-

ing the convolutions at an exponential rate, the receptive field grows exponentially,

rather than linearly, by the number of hidden layers [8]. Below, in Figure 2.3, we see

this increase in receptive field by comparing causal convolutional layers and dilated

convolutional layers. On the left of Figure 2.3, we have the “traditional” CNN. For

9

Figure 2.3: Causal layer of CNN vs. dilated layer of CNN [8].

that network, we have a receptive field of size #layers+ 2. For the dilated CNN, we

instead of a receptive field of size 2#layers+1. This exponential increase in the size of

the receptive field makes WaveNet much more attractive for audio processing.

Another key feature of WaveNet is the µ-law softmax layer which reduces the

number of bits per data point from 16 bits to 8 bits. The applied transformation on

a signal xt is described by

f(xt) = sign(xt)
ln(1 + µ|xt|)

ln(1 + µ)

in [8], where−1 < xt < 1 and µ = 255 (the desired number of target levels). This layer

reduces the data from 65,536 (corresponding to the 16 bits per sample in wav files)

to 256 possible levels non-linearly, which provides for a much better reconstruction

of the original signal. Reducing the number of bits per data point by a factor of 256

greatly improves the rate at which prior probabilities can be calculated.

The architecture of WaveNet utilizes a stack of dilated CNNs connected through

residual and skip connections. The input waveform goes through a causal convolution

to prevent the information from the samples being replicated through the network.

Following that, the convolved input is one-hot encoded to 256 levels as generated by

the µ-law companding step and sent to the stack of layers. In each layer, the input

goes through a dilated convolution, which travels through a gated activation unit. The

dimensionality is reduced through a 1x1 convolution and summed with the residual.

The layers are then connected through skip-connections and go to post-processing to

10

Figure 2.4: WaveNet architecture [8].

Figure 2.5: Detailed residual level architecture.

yield the output. We can see the full architecture in Figure 2.4. It is worth noting

in this architecture that, at each residual level, there are actually two different 1x1

convolutions happening after the gated activation unit, as shown in Figure 2.5.

In the form presented in [8], WaveNet computes predictions incrementally prior to

training, resulting in slow prediction time. Recent developments in WaveNet attempt

to speed up the prediction time by parallizing the prediction with a “student-teacher”

model, similar to the general structure of GANs [11]. Due to the slow speed of the

prediction function, as well as its non-differentiability, we will instead utilize the

11

raw output of WaveNet, rather than the generated waveforms, thus harnessing its

structural power.

12

Chapter 3

Methodology

This project aims to bring together the advantages of GANs and WaveNet in a unique

way. While WaveNet was originally designed to train first on real data then incre-

mentally generate output based on the trained probabilities, it will instead be used

as the generator, taking an input of white noise and generating a set of values from

that input. That set of values, over the course of training, will eventually produce a

Mozart-type, piano-like waveform. This high level architecture is visualized in Fig-

ure 3.1. The true data input to the discriminator network will be randomly selected

from real data from selected audio samples, and fake data will be generated by the

WaveNet generator network.

Just like traditional GANs, the network will train the generator and discriminator

with real and fake (generated) data. Some preprocessing will have to take place to

create the correct dimensions for the data inputs and outputs. Before the training

and generation process, we must select some number of data points to output from

the generator. This size will be fixed throughout the training loop, and will determine

the length of the audio sample that is composed. This value is also used as both the

input size of the discriminator network and the size of the slices of the audio from the

real dataset. As an additional preprocessing step, the program will trim out silence

13

Figure 3.1: Desired final architecture.

at the beginning and ending of the real data files, as well as standardize the all inputs

to the discriminator network using the mean and standard deviation of that specific

slice.

3.1 Discriminator Feasibility

Before the full system is implemented, it’s important to determine the feasibility of

neural networks to learn to label the complicated structure of raw audio. We start by

evaluating the ability of a standalone feed-forward neural network discriminator of

distinguishing between Mozart’s piano music and all other music (orchestral, vocal,

pop). To accomplish this, we can run an independent training loop, as described in

Figure 3.2, which runs separately from the main GAN code. This will help tweak

the numerous parameters of the neural network. Having a well tuned discriminator

that can independently perform classification will be critical to the improvement of

14

Table 3.1: Data set classifications
True Data “Loose” False Data “Tight” False Data

Mozart piano sonatas Symphonic works Beethoven piano sonatas
Misc. Mozart piano works Vocal works Misc. other piano works

Pop songs

the generator.

For this discriminator training loop, we will consider “true” data to be our target

generated data: Mozart piano music. To test out the learning ability of the system,

we will consider the “false” data to be a collection of classical music that does not fea-

ture the piano. Considering computational resources, the initial testing feed-forward

network will have a smaller receptive field for about one second of data. Since one

second of piano should be nearly identical between the true data and the tight false

data, we will use the loose false data for the first round of training. Essentially, this

will train the network to tell the difference between piano and non-piano.

While distinguishing between piano and non-piano is not the end objective of the

project, it is an important first step. Having a discriminator network be able to dis-

tinguish between the two means that the generator network will be forced to generate

something that sounds at least like a piano, just not yet like Mozart. We hypothesize

that being able to generate piano music that sounds like Mozart (as opposed to that

of a different composer) will require a much larger receptive field than one second.

However, receptive field increase can only happen after full implementation of the

GAN.

3.2 Simple GAN

Another important step to take with this project is a “proof of concept” using a simple

GAN setup, using only two neural networks. It is expected that a simple GAN will

not be able to model the distribution of the dataset as well as the proposed Wavenet

15

Figure 3.2: Discriminator training flow chart.

16

Figure 3.3: Simple GAN block diagram.

+ GAN structure.

The Simple GAN consists of two 5-layer networks (the choice of 5-layers is not

arbitrary, and was based on the initial results from Section 4.1). When compared to

the design of Figure 3.1, the Simple GAN setup is relatively more straightforward, as

shown Figure 3.3. The two networks are both simple feed-forward networks, although

the generator takes in an input size of 100 random samples to increase the randomness

throughout the network. Due to initial results having too many weights being zeroed

out, the activation function for both networks chosen to be a leaky ReLU:

f(x) =

x x > 0

0.2x otherwise

We will minimize our objective loss function with stochastic gradient descent.

17

We implement the GAN learning with TensorFlow. To start, we define two vari-

ables that will be inputs to the discriminator network: a placeholder input X which

will be sampled from real data and the sample from the generator. These variables,

when passed through the discriminator network, in turn yield the probabilities and

logits1.

X = tf.placeholder(tf.float32 , shape =[None , w1], name=’X’)

G_sample = generator(Z)

D_real , D_logit_real = discriminator(X)

D_fake , D_logit_fake = discriminator(G_sample)

The logits from the real and fake data are used to calculate the loss figures from the

output of the discriminator. The loss figure from the real input is quite intuitive.

D_loss_real = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.ones_like(D_logit_real),

logits=D_logit_real

)

)

D_loss_fake = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.zeros_like(D_logit_fake),

logits=D_logit_fake

)

)

D_loss = D_loss_real + D_loss_fake

The discriminator should label the logits from D logit real as true, or 1 and the

logits from D logit fake as fake, or 0. In each case, the mean of the cross entropy

1Logit is the inverse of the sigmoidal “logistic” function. In this case, as the output of the network
is a probability, the logit is the log-odds.

18

between the label and the logits is used to define the loss, and the total discriminator

loss is defined as the sum of the two losses.

The generator loss is less intuitive: the goal of the generator is to make the

discriminator believe that the label should be true, or 1. Loss should then be defined

as the distance (distance being any metric, not necessarily Euclidean) from the label

1, given fake data. This loss is the objective function to minimize for our gradient

descent solver. We need to define our generator loss to be the mean of the cross

entropy between a label of true, or 1 and the fake logits, as defined below.

G_loss = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.ones_like(D_logit_fake),

logits=D_logit_fake

)

)

Once these loss figures have been defined, we set up the gradient descent solvers,

being careful to only adjust the weights of the discriminator, defined as theta D, when

minimizing the discriminator loss, and only adjusting the weights of the generator,

defined as theta G whem minimizing the generator loss.

D_solver = tf.train.GradientDescentOptimizer(learning_rate =3e-3)

.minimize(D_loss , var_list=theta_D)

G_solver = tf.train.GradientDescentOptimizer(learning_rate =3e-3)

.minimize(G_loss , var_list=theta_G)

Finally, we can run these solvers to perform gradient descent. Empirically, we

saw from initial runs that the discriminator often outperforms the generator, i.e.,

that the discriminator loss converges quickly, leaving the generator unable to improve

itself. To resolve this, we run the generator solver more times at each epoch than the

discriminator.

19

for g_batch in range (20):

_, G_loss_curr = sess.run([G_solver , G_loss],

feed_dict ={Z: sample_Z(1, 100)}

)

for d_batch in range (1):

_, D_loss_curr = sess.run([D_solver , D_loss],

feed_dict ={X: batch_data , Z: sample_Z(1, 100)}

)

3.3 WaveNet GAN

There are a number of more fine implementation details that are not fully explained

with only Figure 3.1. To start, we must evaluate the details of the generator net-

work. In its original implementation, WaveNet incrementally makes predictions and,

as mentioned before, there are additional attempts to improve this speed, such the

work of van den Oord et al. in “Parallel WaveNet: Fast High-Fidelity Speech Syn-

thesis” [11]. Perhaps more crucial than speed, however, is that the generative aspect

of the WaveNet implementation makes training the generator weights difficult, as

incremental predictions will create a new set of weights based on past probabilities.

As a result, we use only the structure of the WaveNet training for our generative

model. This does however introduce a few new factors into the training process. The

network itself produces a size (number of samples requested) × 256 matrix2. Each

column vector of the output (which has dimension 1× 256) contains logit values for

each output level. This output requires processing before it can be compared with the

standardized real data. The processing block diagram is shown in Figure 3.4. While

2Where 256 is the number of quantization channels, determined by the parameter µ in the µ-law
softmax layer of WaveNet.

20

Figure 3.4: Processing steps for WaveNet output.

the original WaveNet structure used a random selection of levels (a non-differentiable

operation), we process using this flow chart to ensure that gradients can still be

computed between the generator and the output of the discriminator.

The softmax layer converts the logits to pure probabilities, which we will use as

weights to simulate the µ-law encoding. This encoding step is achieved through a

simple matrix multiplication:

a1,1 · · · a1,x

...
. . .

a256,1 a256,x

256×x

×

0

1

...

254

255

256×1

The implementation of this processing is quite straightforward:

levels = []

for i in range(quantization_channels):

levels.append(i)

levels_tensor = tf.reshape(

tf.constant(levels , dtype=tf.float32),

[quantization_channels , 1]

21

)

G_pre_stand = tf.matmul(tf.nn.softmax(w_prediction), levels_tensor)

mean = tf.reduce_mean(G_pre_stand)

std = reduce_std(G_pre_stand)

G_sample = tf.map_fn(lambda x: (x - mean)/std , G_pre_stand)

This G sample variable is then used in the same way as it was in the Simple GAN: as

the input to the discriminator network to generate the loss figure for minimization.

Again, due to initial results, we will train the generator at a higher frequency than

the discriminator.

As before, the discriminator network is set up with 5 hidden layers, using leaky

ReLUs as the activation function for the neurons and the sum of the losses from the

real and fake logits as the objective to minimize.

3.4 Success Metrics

It is difficult to measure “success” in this project objectively outside of the surveying

of human subjects. However, instead of surveying human subjects, we will look at

two specific criteria that do not necessarily indicate generation of music that would

fool humans, but indicate a baseline success of the system.

1. We want to see loss figures for both the discriminator and generator converging

to near-zero. This would indicate the system’s ability to prevent convergence

to spurious local minima.

2. We would like to see strong peaks in the frequency spectrum of the generated

output. This can be achieved by both looking at the Fast Fourier Transform

and the spectrogram.

The second metric is particularly important due to the nature of our desired data.

In Western music, notes are constructed according to a fixed set of frequencies, as

22

Table 3.2: Notes and their corresponding frequencies [12]. The letter refers to the
pitch name (A, B, C, D, E, F, G), and the number refers to the octave of that note.
A0 (lowest piano note) C3 C4 C5 C8 (highest piano note)

27.50 Hz 130.8 Hz 261.6 Hz 523.3 Hz 4186 Hz

shown Table 3.2. As a result, we should see peaks at some of the frequencies that

correspond to notes. High amplitudes at those frequencies correspond to the audibility

of notes. Looking at the spectrogram should further confirm this, with frequency

peaks changing over time, representing changes in note values. Ideally, we would

see multiple strong peaks at the same time, meaning the chords (rather than just

individual notes) are being generated.

Consider for example the spectrum (Figure 3.5) and spectrogram (Figure 3.6) of

a small sample from one of our “true” data points. In this example, we observe a

peak around 520 Hz, which corresponds to the C5 frequency in Table 3.2. We further

see the high intensity bands of frequency in the lower frequencies of the spectrogram,

mainly below 0.1. In this particular spectrogram, we have a sampling frequency of

44.1× 103 Hz, meaning the cutoff for the highest intensity (around 0.1) corresponds

to frequencies in the range of

44.1× 103 Hz

2
× 0.1 = 2.205× 103 Hz.

This freqeuncy corresponds to approximately a C#7, which is well within the range

of a piano [12].

23

Figure 3.5: Spectrum from a small sample of a Mozart piano work.

Figure 3.6: Spectrogram from a small sample of a Mozart piano work.

24

Chapter 4

Results

4.1 Initial Discriminator Testing

As a preliminary test, the discriminator was set up with three layers, 10008 total

neurons and tested on 28 samples of Mozart piano sonatas (i.e., only true data).

Data was considered and trained on one sample per batch, as described in Section

3.1.This first run was quite promising, showing a dramatic decrease in the loss figure

(see Figure 4.1). However, this rapid reduction in the loss appears to be due to the

lack of negative samples. Without the non-Mozart data, the discriminator network

simply learned the distribution of the inputted samples, overfitting to the positive

data. Regardless, this first run was a good indicator of the discriminator network’s

ability to perform gradient descent and a demonstration of the correct setup for the

neural network. Notice that, as expected, the starting loss figure is quite close to our

figure of 0.693 nats as being the “random” classifier.

The next steps in the discriminator tuning was to implement training on true and

false information with random batching, according to the flow chart described in the

methodology. First, we start with a learning rate sweep on the different depths of

the neural network. We first observe the cumulative average loss on each for different

25

Figure 4.1: Loss with 28 positive samples only

learning rates over a number of layer depths in Figures 4.2, 4.3 and 4.4. These

plots paint a promising picture for all of the networks at the learning rate of 0.01,

particularly as the depth of the network increases. However, having a higher learning

rate means the loss is unstable, as we see in Figures 4.5, 4.6 and 4.7.

While the higher learning rate showed very exciting results for the average loss, it

created a great deal of oscillation in the step by step loss. This instability will be a

problem in the GAN system, as spikes in the loss of the discriminator will adversely

affect the generator. We notice as well that the loss at our lower rate of 0.001 hovered

around our 0.693 figure, both on average and step to step, meaning it was ineffective

in classifying between real and fake data.

4.2 Simple GAN results

In the case of the Simple GAN described in Section 3.2, the discriminator’s learning

ability was often greater than the generator’s, even in the case where the generator’s

learning batch size was twenty times the size of the discriminator’s learning batch.

In addition, both the AdamOptimizer and GradientDescentOptimizer provided by

26

Figure 4.2: 3 hidden layers, cumulative average loss

Figure 4.3: 4 hidden layers, cumulative average loss

Figure 4.4: 5 hidden layers, cumulative average loss

27

Figure 4.5: 3 hidden layers, loss per step

Figure 4.6: 4 hidden layers, loss per step

Figure 4.7: 5 hidden layers, loss per step

28

Figure 4.8: Generator Trained 5× the Discriminator

Figure 4.9: Generator Trained 10× the Discriminator

TensorFlow resulted in spurious local minima for the generator’s loss function. We

can see these results in Figures 4.8 and 4.9. In either scenario, both of the networks

seemed to converge quickly, with the discriminator loss hovering near zero, and the

generator loss converging to a spurious local minimum.

Oftentimes, this generative system was essentially unsuccessful in generating any-

thing that sounded like piano music. There was one instance in the 10× batch how-

ever — either through luck of the stochastic gradient descent or through some sort of

overfitting — where an early iteration did produce something that was very clearly

mimicking the sound of a piano, albeit covered with some noise. Looking at the spec-

trum of this “nearly” piano signal in Figure 4.10 shows us the frequency peaks that

29

Figure 4.10: “Nearly” Piano Spectrum

we were looking for. We further improve the sound quality of this spectrum with a

15th order Chebyshev low pass filter, as shown in Figure 4.11. Additionally, we can

see that the outputted waveform moved through several pitches in the spectrogram

in Figure 4.12.

On a number of other occasions, piano-sounding pitches were produced at various

stages of the training process. Their respective frequency spectra and spectrograms

were similar to that of 4.10, but were not easily reproducible, due to the stochastic

nature of our learning algorithm.

Unfortunately, most iterations of the Simple GAN were not this successful in

creating piano-like sounds. We hypothesize that the number of nodes and layers was

not sufficient for capturing the complexity of the audio files. In Figure 4.13, we see the

spectrum generated after training the Simple GAN for 980 iterations. In particular,

we see that are no peaks anywhere in the spectrum.

Despite the number of unsuccessful samples generated by Simple GAN, we con-

30

Figure 4.11: Filtered “Nearly” Piano Spectrum (rescaled)

Figure 4.12: Spectrogram of “Nearly” Piano Spectrum

31

Figure 4.13: Spectrum From Unsuccessful Simple GAN Sample After 980 Iterations

tinue implementation of the WaveNet GAN, as we expect that the Simple GAN’s

generator was the largest factor in the system’s inability to learn and mimic the

model, considering the success of the discriminator alone to distinguish between real

and fake data, as shown in Section 4.1.

4.3 WaveNet GAN results

The WaveNet GAN was relatively more successful in generating according to our suc-

cess metrics, although not necessarily so to the human ear. Perhaps most important

feature to note is the success of the system in the frequency domain relative to the

Simple GAN. We start by running the full WaveNet GAN using 5 times frequency

of generator training over 1000 iterations. Figure 4.14 shows the development of

spectra the generator samples. Early samples at 100 iterations do not show a clear

tendency towards modes at frequencies, yet starting at 300 iterations, we begin to see

clear peaks in the spectrum. By the 900th iteration, there is a clear peak at a single

frequency point in the spectrum.

32

Figure 4.14: Spectra from GAN Samples

33

Figure 4.15: Spectra from 2060th Iteration

With 900 iterations and a 5× frequency of generator training, we see that the

generator is still unable to fully mimic the model. We increase the number of iterations

to 2000 and the frequency of generator training relative to the discriminator training

to 8. In Figure 4.15, we see the spectrum following this training method at the 2000th

iteration. Although the resulting waveform is hardly piano-like to the ear, we still see

that there is a marked improvement in the spectrum.

We also examine the loss figures of this training loop. While Figure 4.16 does

seem to show a convergence in loss, looking at the training losses from iterations 100

to 2000 in Figure 4.17 shows that the discriminator and generator are still unable

to fully converge. However, these loss figures show much more promising tendency

towards convergence to zero compared to those of the Simple GAN.

34

Figure 4.16: Discriminator and Generator Training Losses

Figure 4.17: Discriminator and Generator Training Losses, Omitting First 100 Steps
for Greater Clarity

35

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The results, particularly from WaveNet GAN, indicate a promising first start on the

road to authentic audio generation, and towards further extending the applications

of GANs. While the generation was ultimately not successful in creating specifically

piano-esque sound, we have shown that Generative Adversarial Networks are capable

of creating samples that show tendencies in the frequency domain, not just the time

domain.

In fact, this is a particularly novel conclusion: in the case of image processing

and generation, which is the standard demonstration of the power of GANs, the main

focus is the probability distribution of the “time” domain, which in the case of images,

is the value of the pixels. This project shows that, with the proper network structures,

GANs can also be used to mimic the frequency domain given only time-based data.

It appears that the mode-collapse issue inherent to GANs is a problem in both

time and frequency domains. While the WaveNet GAN was able to create a pitched

waveform, it was generally unable to produce something that sounds like a piano,

due to the fact that the sound of a piano is more complex than a single pitch at a

36

frequency point. Every instrument has a different set of overtones that are produced

upon striking a key or plucking a string. The production of overtones is what gives

different instruments a distinctive timbre aside from the primary pitch that is pro-

duced. Among other issues, production of a realistic piano sound will be contingent

on the ability to deal with the mode collapse issue.

5.2 Proposed Improvements

5.2.1 Increased Depth and Computation Time

The samples produced for the WaveNet GAN ran for a maximum of 20 hours, given

computational resource constraints, while similar projects, such as those in [7] and

[13] ran on more powerful hardware for a period of 4 and 18 days, respectively. It is

possible that simply running the code for a longer period of time would yield more

meaningful and realistic results with the existing implementation of the WaveNet

GAN. While we did not see a huge improvement in the loss figures for the discrim-

inator and generator between iterations 300 and 900, we did see an improvement in

its spectrum over that time, so further computation may yield better results.

In addition, increasing both the number of quantization channels for the generator

and increasing the depths of the generator and discriminator may have yielded better

results. These steps, coupled with additional tuning and rework of other hyperparam-

eters (such as nodes per layer and learning rate), could also lead to increased realism

and quality, but are again dependent on more processing power.

As seen in Figure 4.17, the training losses for both the discriminator and generator

were unable to converge. In fact, empirical results show that stochastic gradient

descent with ReLU activation functions are usually unable to converge to ground

truth parameters, even for less complex networks [14]. In these scenarios, we must

consider either changing our learning algorithm or changing the landscape of our

37

objective function.

It may be possible to redesign the loss function of the generator and the discrimi-

nator to have guarantees of no spurious local minima while maintaining the ability to

estimate gradients using samples. Some initial attempts to make objective functions

with these promises can be found in “Learning One-hidden-layer Neural Networks

with Landscape Design”, though their designed objective function works only under

very specific assumptions and conditions [15]. Further, it may be possible to utilize

other learning algorithms which can prevent convergence to spurious local minima.

5.2.2 Signal Processing for Generator Improvement

Given the nature of our desired generated samples, we can consider adding traditional

elements of digital signal processing to the output of our generator. As was previously

seen in Section 4.2, passing the generated sample through a low pass filter improved

the quality of our signal. However, filters and other signal processing steps (aside

from the data reshaping in Figure 3.4) were never used in the training process. The

addition of a signal processing step within training, like in Figure 5.1, could improve

the generator’s output step by step and therefore further challenge the discriminator.

It is also possible to factor the output of the discriminator’s decision into adaptive

filters for the signal processing block if the analytic and differentiable solutions for

the filters are known (which is the case for many less-complex filters). In this way,

the signal processing step is factored into the landscape of the objective filter. While

this project used filters to remove noise, and a low pass filter to remove noise may

seem most intuitive at first, other elements may be taken into consideration: Donahue

et al. used an upsampling procedure based on a learned filter from the generator’s

parameters [7].

An interesting result from [7] was that the “WaveGAN“ network, which trained

on the time domain, was more successful in mimicking the frequency domain of the

38

Figure 5.1: Block diagram with DSP step.

true data than their “SpecGAN” implementation, which trained on the frequency

domain using spectrograms as images. So while learning on the frequency domain

may not immediately be successful (i.e., through spectrograms), frequency domain

based processing on time domain data may still overall improve the system.

5.2.3 Potential Mode Collapse Solutions

Mode collapse is a well known and critical problem in GANs. Although our real

data distribution is complex and multimodal, yet the generator fails to capture the

complexity of the data and produces samples that are identical or nearly identical.

We faced this problem in our training, with later iterations failing to improve the

generated waveform.

There has been much discussion on how to fix the mode collapse issue in the train-

ing of GANs, and employing some of the following proposed solutions may improve

the results of this project.

1. Multiple generators (coined Mixture GAN): instead of just one generator net-

39

work, multiple generators are used along with a discriminator network and a

classifier network. The output of a generator is randomly selected as the fake

input to the discriminator. As with standard GANs, the discriminator attempts

to distinguish fake and real while the classifier network attempts to determine

which generator network was randomly selected as the fake data [16]. It would

be particularly interesting to see if there was a relationship between the number

of large frequency modes and number of generators used.

2. Wasserstein GAN (WGAN): WGAN uses the Wasserstein metric as a loss func-

tion, and has empirically been shown to prevent mode collapse [17].

3. Improve diversity through minibatches: because the discriminator processes

each example independently, there is no coordination between its gradients.

When GANs are near collapse, the gradient of the discriminator may point in

similar directions for many points. By having the discriminator look at multiple

examples in combination, we can potentially avoid collapse of the generator [2].

5.2.4 Progressive Growing

The work referenced to in Section 1.2 (celebrity image generation) is fully explained

in “Progressive Growing of GANs for Improved Quality, Stability, and Variation”

[13], in which they propose a system in which the resolution of the generator and

discriminator grows with the progression of training (shown in Figure 5.2). There are

many benefits to the progressive training, such as increased stability of generation

early in training and reduced training time.

Progressive growing takes advantage of slowly increasing the resolution in images,

and we must therefore find an analog to resolution for audio. One proposed definition

is to divide the audio sample into the number of desired levels (i.e. 16 to mimic the

4× 4 image), and take the average for each divided segment. Since audio waveforms

40

Figure 5.2: Progressive growing through training loop.

Figure 5.3: 16 and 64 “Pixel” Resolution for Sample Waveform.

41

often approximately average to 0, we take the average of the absolute value of the

points in a segment, and flip the sign between each “pixel”, i.e., for some signal x

with length l and a desired p number of pixels, the held value of the k-th pixel is

defined to be

fk = (−1)k

l/p∑
i=0

∣∣xi+(k×l/p)

∣∣
l

p

 ,

where the value of fk is held for a duration of l
p

samples. We can see this in practice

on a real signal in Figure 5.3.

5.3 Final Discussion

We present WaveNet GAN, which is one of the first applications of GANs on raw audio

waveforms. We have seen that WaveNet GAN can produce samples with a meaningful

frequency distribution. While WaveNet GAN did not capture the distribution of an

instrument or a composer, it did show that GANs have the possibility to capture

these complex datasets and we propose a number of future steps towards improving

our system.

42

Appendix A

Code Listing

A.1 Simple GAN Code

from __future__ import print_function

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

from datetime import datetime

from random import *

import argparse

import json

import os

import sys

import time

import librosa

import tensorflow as tf

43

import numpy as np

from wavenet import AudioReader

def xavier_init(size):

in_dim = size [0]

xavier_stddev = 1. / tf.sqrt(in_dim / 2.)

return tf.random_normal(shape=size , stddev=xavier_stddev)

def standardize(samples):

mean = np.mean(samples)

std = np.std(samples)

standardized = []

for d in samples:

standardized.append(float(d-mean)/std)

return standardized

def process(samples):

reshape = []

for d in samples:

reshape.append(d[0])

return reshape

def write_wav(waveform , sample_rate , filename):

44

y = np.array(waveform)

librosa.output.write_wav(filename , y, sample_rate)

print(’Updated wav file at {}’.format(filename))

w1 = 22000

w2 = 18335

w3 = 14668

w4 = 11001

w5 = 7334

w6 = 3667

w7 = 1

Discriminator Variables

X = tf.placeholder(tf.float32 , shape =[None , w1], name=’X’)

D_W1 = tf.Variable(xavier_init ([w1 , w2]), name=’D_W1’)

D_b1 = tf.Variable(tf.zeros(shape=[w2]), name=’D_b1’)

D_W2 = tf.Variable(xavier_init ([w2 , w3]), name=’D_W2’)

D_b2 = tf.Variable(tf.zeros(shape=[w3]), name=’D_b2’)

D_W3 = tf.Variable(xavier_init ([w3 , w4]), name=’D_W3’)

D_b3 = tf.Variable(tf.zeros(shape=[w4]), name=’D_b3’)

D_W4 = tf.Variable(xavier_init ([w4 , w5]), name=’D_W4’)

D_b4 = tf.Variable(tf.zeros(shape=[w5]), name=’D_b4’)

D_W5 = tf.Variable(xavier_init ([w5 , w6]), name=’D_W5’)

D_b5 = tf.Variable(tf.zeros(shape=[w6]), name=’D_b5’)

45

D_W6 = tf.Variable(xavier_init ([w6 , w7]), name=’D_W6’)

D_b6 = tf.Variable(tf.zeros(shape=[w7]), name=’D_b6’)

theta_D = [D_W1 , D_W2 , D_W3 , D_W4 , D_W5 , D_W6 ,

D_b1 , D_b2 , D_b3 , D_b4 , D_b5 , D_b6]

Generator Variables

Z = tf.placeholder(tf.float32 , shape =[None , 100], name=’Z’)

G_W1 = tf.Variable(xavier_init ([100, w6]), name=’G_W1’)

G_b1 = tf.Variable(tf.zeros(shape=[w6]), name=’G_b1’)

G_W2 = tf.Variable(xavier_init ([w6 , w5]), name=’G_W2’)

G_b2 = tf.Variable(tf.zeros(shape=[w5]), name=’G_b2’)

G_W3 = tf.Variable(xavier_init ([w5 , w4]), name=’G_W3’)

G_b3 = tf.Variable(tf.zeros(shape=[w4]), name=’G_b3’)

G_W4 = tf.Variable(xavier_init ([w4 , w3]), name=’G_W4’)

G_b4 = tf.Variable(tf.zeros(shape=[w3]), name=’G_b4’)

G_W5 = tf.Variable(xavier_init ([w3 , w2]), name=’G_W5’)

G_b5 = tf.Variable(tf.zeros(shape=[w2]), name=’G_b5’)

G_W6 = tf.Variable(xavier_init ([w2 , w1]), name=’G_W6’)

G_b6 = tf.Variable(tf.zeros(shape=[w1]), name=’G_b6’)

theta_G = [G_W1 , G_W2 , G_W3 , G_W4 , G_W5 , G_W6 ,

46

G_b1 , G_b2 , G_b3 , G_b4 , G_b5 , G_b6]

Generator network

def generator(z):

G_h1 = tf.nn.leaky_relu(tf.matmul(z, G_W1) + G_b1)

G_h2 = tf.nn.leaky_relu(tf.matmul(G_h1 , G_W2) + G_b2)

G_h3 = tf.nn.leaky_relu(tf.matmul(G_h2 , G_W3) + G_b3)

G_h4 = tf.nn.leaky_relu(tf.matmul(G_h3 , G_W4) + G_b4)

G_h5 = tf.nn.leaky_relu(tf.matmul(G_h4 , G_W5) + G_b5)

G_log_prob = tf.matmul(G_h5 , G_W6) + G_b6

G_prob = tf.nn.sigmoid(G_log_prob)

return G_prob

Discriminator network

def discriminator(x):

D_h1 = tf.nn.leaky_relu(tf.matmul(x, D_W1) + D_b1)

D_h2 = tf.nn.leaky_relu(tf.matmul(D_h1 , D_W2) + D_b2)

D_h3 = tf.nn.leaky_relu(tf.matmul(D_h2 , D_W3) + D_b3)

D_h4 = tf.nn.leaky_relu(tf.matmul(D_h3 , D_W4) + D_b4)

D_h5 = tf.nn.leaky_relu(tf.matmul(D_h4 , D_W5) + D_b5)

D_logit = tf.matmul(D_h5 , D_W6) + D_b6

D_prob = tf.nn.sigmoid(D_logit)

return D_prob , D_logit

Uniform sampler

47

def sample_Z(m, n):

return np.random.uniform (-1., 1., size=[m, n])

Define real and fake logits

G_sample = generator(Z)

D_real , D_logit_real = discriminator(X)

D_fake , D_logit_fake = discriminator(G_sample)

Define loss figures to minimize for networks

D_loss_real = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.ones_like(D_logit_real),

logits=D_logit_real

)

)

D_loss_fake = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.zeros_like(D_logit_fake),

logits=D_logit_fake

)

)

D_loss = D_loss_real + D_loss_fake

G_loss = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.ones_like(D_logit_fake),

logits=D_logit_fake

)

)

48

Only update D(X)’s parameters , so var_list = theta_D

D_solver = tf.train.GradientDescentOptimizer(

learning_rate =3e-3)

.minimize(D_loss , var_list=theta_D)

Only update G(X)’s parameters , so var_list = theta_G

G_solver = tf.train.GradientDescentOptimizer(

learning_rate =3e-3)

.minimize(G_loss , var_list=theta_G)

coord = tf.train.Coordinator ()

sess = tf.Session ()

Set up real data sampler

directory = ’./ sampleTrue ’

reader = AudioReader(directory , coord , sample_rate = 22000,

gc_enabled=False , receptive_field =1000 ,

sample_size =21000 , silence_threshold =0.05)

threads = tf.train.start_queue_runners(sess=sess , coord=coord)

reader.start_threads(sess)

init = tf.global_variables_initializer ()

sess.run(init)

Main training loop

for it in range (1000):

batch_data = []

start_time = time.time()

49

Sample real data

data = sess.run(reader.dequeue (1))

while (len(data [0]) < w1):

data = sess.run(reader.dequeue (1))

data = np.array(data [0])

samples = process(data)

batch_data.append(samples)

Train generator

for g_batch in range (20):

_, G_loss_curr = sess.run([G_solver , G_loss], feed_dict ={Z: sample_Z(1, 100)})

Train discriminator

for d_batch in range (1):

_, D_loss_curr = sess.run([D_solver , D_loss], feed_dict ={X: batch_data , Z: sample_Z(1, 100)})

duration = time.time() - start_time

Produce sample on every 20th iteration

if (it % 20 == 0):

waveform = []

waveform = np.reshape(sess.run(G_sample , feed_dict ={Z: sample_Z(1, 100)}) , [w1])

print(waveform)

name = ’simplegenerate -’ + str(it) + ’.wav’

write_wav(waveform , 22000 , name)

A.2 WaveNet GAN Code

50

from __future__ import print_function

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

from datetime import datetime

from random import *

import argparse

import json

import os

import sys

import time

import librosa

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import ffnn

from wavenet import WaveNetModel , AudioReader , optimizer_factory

GAN params

NUM_EPOCHS = 10

Wavenet params

BATCH_SIZE = 1

51

DATA_DIRECTORY = ’./VCTK -Corpus ’

LOGDIR_ROOT = ’./ logdir ’

CHECKPOINT_EVERY = 50

NUM_STEPS = int(1e5)

LEARNING_RATE = 3e-2

WAVENET_PARAMS = ’./ wavenet_params.json’

STARTED_DATESTRING = "{0:%Y-%m-%dT%H-%M-%S}".format(datetime.now())

SAMPLE_SIZE = 100000

L2_REGULARIZATION_STRENGTH = 0

SILENCE_THRESHOLD = 0.3

EPSILON = 0.001

MOMENTUM = 0.9

MAX_TO_KEEP = 5

METADATA = False

def placeholder_inputs(batch_size):

Generate placeholder variables for input tensors

inputs_placeholder = tf.placeholder(tf.float32 ,

shape =(batch_size , w1),

name=’inputs_placeholder ’

)

labels_placeholder = tf.placeholder(tf.int32 ,

shape =(batch_size),

name=’labels_placeholder ’

)

return inputs_placeholder , labels_placeholder

def fill_feed_dict(batch_data , label_data , inputs_pl , labels_pl):

Feed dict for placeholders from placeholder_inputs ()

52

feed_dict = {

inputs_pl: batch_data ,

labels_pl: label_data

}

return feed_dict

def get_generator_input_sampler ():

return lambda mu , sigma , n: np.random.normal(

mu, sigma , size=[1, n]

)

def standardize(samples):

mean = np.mean(samples)

std = np.std(samples)

standardized = []

for d in samples:

standardized.append(float(d-mean)/std)

return standardized

def process(samples):

standardized = standardize(samples)

return standardized

53

def xavier_init(size):

in_dim = size [0]

xavier_stddev = 1. / tf.sqrt(in_dim / 2.)

return tf.random_normal(shape=size , stddev=xavier_stddev)

def get_arguments ():

omitted for clarity

def discriminator(x):

D_h1 = tf.nn.leaky_relu(tf.matmul(x, D_W1) + D_b1)

D_h2 = tf.nn.leaky_relu(tf.matmul(D_h1 , D_W2) + D_b2)

D_h3 = tf.nn.leaky_relu(tf.matmul(D_h2 , D_W3) + D_b3)

D_h4 = tf.nn.leaky_relu(tf.matmul(D_h3 , D_W4) + D_b4)

D_h5 = tf.nn.leaky_relu(tf.matmul(D_h4 , D_W5) + D_b5)

D_logit = tf.matmul(D_h5 , D_W6) + D_b6

D_prob = tf.nn.sigmoid(D_logit)

return D_prob , D_logit

def write_wav(waveform , sample_rate , filename):

y = np.array(waveform)

librosa.output.write_wav(filename , y, sample_rate)

print(’Updated wav file at {}’.format(filename))

def reduce_var(x, axis=None , keepdims=False):

m = tf.reduce_mean(x, axis=axis , keep_dims=True)

devs_squared = tf.square(x - m)

54

return tf.reduce_mean(devs_squared ,

axis=axis ,

keep_dims=keepdims

)

def reduce_std(x, axis=None , keepdims=False):

return tf.sqrt(reduce_var(x, axis=axis , keepdims=keepdims))

with tf.Graph (). as_default ():

coord = tf.train.Coordinator ()

sess = tf.Session ()

w1 = 22000

w2 = 18335

w3 = 14668

w4 = 11001

w5 = 7334

w6 = 3667

w7 = 1

Discriminator Variables

D_W1 = tf.Variable(xavier_init ([w1 , w2]), name=’D_W1’)

D_b1 = tf.Variable(tf.zeros(shape=[w2]), name=’D_b1’)

D_W2 = tf.Variable(xavier_init ([w2 , w3]), name=’D_W2’)

D_b2 = tf.Variable(tf.zeros(shape=[w3]), name=’D_b2’)

D_W3 = tf.Variable(xavier_init ([w3 , w4]), name=’D_W3’)

D_b3 = tf.Variable(tf.zeros(shape=[w4]), name=’D_b3’)

55

D_W4 = tf.Variable(xavier_init ([w4 , w5]), name=’D_W4’)

D_b4 = tf.Variable(tf.zeros(shape=[w5]), name=’D_b4’)

D_W5 = tf.Variable(xavier_init ([w5 , w6]), name=’D_W5’)

D_b5 = tf.Variable(tf.zeros(shape=[w6]), name=’D_b5’)

D_W6 = tf.Variable(xavier_init ([w6 , w7]), name=’D_W6’)

D_b6 = tf.Variable(tf.zeros(shape=[w7]), name=’D_b6’)

theta_D = [D_W1 , D_W2 , D_W3 , D_W4 , D_W5 , D_W6 ,

D_b1 , D_b2 , D_b3 , D_b4 , D_b5 , D_b6]

args = get_arguments ()

Load parameters from wavenet params json file

with open(args.wavenet_params , ’r’) as f:

wavenet_params = json.load(f)

quantization_channels = wavenet_params[’quantization_channels ’]

Intialize generator WaveNet

G = WaveNetModel(

batch_size =1,

dilations=wavenet_params["dilations"],

filter_width=wavenet_params["filter_width"],

residual_channels=wavenet_params["residual_channels"],

dilation_channels=wavenet_params["dilation_channels"],

skip_channels=wavenet_params["skip_channels"],

56

quantization_channels=

wavenet_params["quantization_channels"],

use_biases=wavenet_params["use_biases"],

initial_filter_width=

wavenet_params["initial_filter_width"])

gi_sampler = get_generator_input_sampler ()

White noise generator params

white_mean = 0

white_sigma = 1

white_length = 27117

Z = tf.placeholder(tf.float32 ,

shape =[None , white_length], name=’Z’

)

Initialize generator

_, w_prediction = G.loss(input_batch=Z, name=’generator ’)

theta_G = tf.trainable_variables(scope=’wavenet ’)

X = tf.placeholder(tf.float32 , shape =[None , w1], name=’X’)

init = tf.global_variables_initializer ()

sess.run(init)

Quantization matrix multiplication

levels = []

57

for i in range(quantization_channels):

levels.append(i)

levels_tensor = tf.reshape(

tf.constant(levels , dtype=tf.float32),

[quantization_channels , 1]

)

G_pre_stand = tf.matmul(tf.nn.softmax(w_prediction),

levels_tensor

)

Standardization

mean = tf.reduce_mean(G_pre_stand)

std = reduce_std(G_pre_stand)

G_sample = tf.map_fn(lambda x: (x - mean)/std , G_pre_stand)

Define real and fake logits

D_real , D_logit_real = discriminator(X)

D_fake , D_logit_fake = discriminator(

tf.reshape(G_sample , [1, w1])

)

Define loss figures to minimize for networks

D_loss_real = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.ones_like(D_logit_real),

logits=D_logit_real

)

)

58

D_loss_fake = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.zeros_like(D_logit_fake),

logits=D_logit_fake

)

)

D_loss = D_loss_real + D_loss_fake

G_loss = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(

labels=tf.ones_like(D_logit_fake),

logits=D_logit_fake

)

)

Only update D(X)’s parameters , so var_list = theta_D

D_solver = tf.train.GradientDescentOptimizer(

learning_rate =3e-3)

.minimize(D_loss , var_list=theta_D)

Only update G(X)’s parameters , so var_list = theta_G

G_solver = tf.train.GradientDescentOptimizer(

learning_rate =3e-3)

.minimize(G_loss , var_list=theta_G)

Set up real data sampler

directory = ’./ sampleTrue ’

reader = AudioReader(directory , coord , sample_rate = 22000,

gc_enabled=False , receptive_field =1000 ,

sample_size =21000 , silence_threshold =0.05

)

59

threads = tf.train.start_queue_runners(sess=sess , coord=coord)

reader.start_threads(sess)

Main training loop

for it in range (5000):

batch_data = []

start_time = time.time()

Sample real data

data = sess.run(reader.dequeue (1))

while (len(data [0]) < w1):

data = sess.run(reader.dequeue (1))

data = np.array(data [0])

samples = process(data)

batch_data.append(samples)

Train generator

for g_batch in range (8):

white_noise = gi_sampler(

white_mean , white_sigma , white_length

)

_, G_loss_curr = sess.run([G_solver , G_loss],

feed_dict ={Z: white_noise}

)

Train discriminator

for d_batch in range (1):

60

_, D_loss_curr = sess.run([D_solver , D_loss],

feed_dict ={X: batch_data , Z: white_noise}

)

duration = time.time() - start_time

Produce sample on every 20th iteration

if (it % 20 == 0):

white_noise = gi_sampler(

white_mean , white_sigma , white_length

)

waveform = []

waveform = np.reshape(sess.run(G_sample ,

feed_dict ={Z: white_noise }), [w1]

)

name = ’fullgenerate -’ + str(it) + ’.wav’

write_wav(waveform , 22000 , name)

A.3 WaveNet Model

The WaveNet model was developed by Igor Babuschkin and is available freely on

GitHub: https://github.com/ibab/tensorflow-wavenet. From this implementa-

tion, wavenet/model.py was used prominently in this project, with only one small

change in the loss function. Lines 680 to the end of model.py have been adjusted

to:

else:

L2 regularization for all trainable parameters

l2_loss = tf.add_n([tf.nn.l2_loss(v)

for v in tf.trainable_variables ()

61

if not(’bias’ in v.name)])

Add the regularization term to the loss

total_loss = (reduced_loss + l2_regularization_strength * l2_loss)

tf.summary.scalar(’l2_loss ’, l2_loss)

tf.summary.scalar(’total_loss ’, total_loss)

return [total_loss , prediction]

62

Bibliography

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative Adversarial Networks,” Jun. 2014,

arXiv:1406.2661 [stat.ML].

[2] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved Techniques for Training GANs,” Jun. 2016, arXiv:1606.03498 [cs.LG].

[3] C. Metz and K. Collins. (2018, Jan.) How an A.I. ‘Cat-and-Mouse

Game’ Generates Believable Fake Photos. The New York Times. [Online].

Available: {https://www.nytimes.com/interactive/2018/01/02/technology/

ai-generated-photos.html}

[4] Sonata-Allegro Form. [Online]. Available: {https://rampages.us/mhis243/

lectures/lesson-8/sonata-allegro-form/}

[5] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville,

and Y. Bengio, “SampleRNN: An Unconditional End-to-End Neural Audio Gen-

eration Model,” Dec. 2016, arXiv:1612.07837 [cs.SD].

[6] C. Walder, “Modelling Symbolic Music: Beyond the Piano Roll,” Jun. 2016,

arXiv:1606.01368 [cs.SD].

[7] C. Donahue, J. McAuley, and M. Puckette, “Synthesizing Audio with Generative

Adversarial Networks,” Feb. 2018, arXiv:1802.04208 [cs.SD].

63

[8] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative

Model for Raw Audio,” Sep. 2016, arXiv:1609.03499v2 [cs.SD].

[9] D. Nag. (2017, Feb.) Generative Adversarial Networks (GANs) in 50 lines of

code (PyTorch). Medium. [Online]. Available: {https://medium.com/@devnag/

generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f}

[10] A. van der Oord and Zenm H. (2016, Sep.) WaveNet: A Generative Model

for Raw Audio. DeepMind. [Online]. Available: {https://deepmind.com/blog/

wavenet-generative-model-raw-audio/}

[11] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,

K. Kavukcuoglu, G. van den Driessche, E. Lockhart, L. C. Cobo, F. Stimberg,

N. Casagrande, D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner,

H. Zen, A. Graves, H. King, T. Walters, D. Belov, and D. Hassabis, “Parallel

WaveNet: Fast High-Fidelity Speech Synthesis,” Nov. 2017, arXiv:1711.10433

[cs.LG].

[12] Note Frequencies. seventhstring. [Online]. Available: {https://www.

seventhstring.com/resources/notefrequencies.html}

[13] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of GANs

for Improved Quality, Stability, and Variation,” Oct. 2017, arXiv:1710.10196

[cs.NE].

[14] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the Computational Efficiency

of Training Neural Networks,” Oct. 2014, arXiv:1410.1141 [cs.LG].

[15] R. Ge, J. D. Lee, and T. Ma, “Learning One-hidden-layer Neural Networks with

Landscape Design,” Nov. 2017, arXiv:1711.00501 [cs.LG].

64

[16] Q. Hoang, T. Dinh Nguyen, T. Le, and D. Phung, “Multi-Generator Generative

Adversarial Nets,” Aug. 2017, arXiv:1708.02556 [cs.LG].

[17] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” Jan. 2017,

arXiv:1701.07875 [stat.ML].

65

